A Note on Posterior Consistency of Nonparametric Poisson Regression Models

نویسندگان

  • Natesh S. Pillai
  • Robert L. Wolpert
  • Merlise A. Clyde
چکیده

We introduce a new truncation approach to extend earlier methods for proving consistency in nonparametric Bayesian regression problems to non-compact state spaces. We illustrate the approach by proving posterior consistency for a nonparametric Poisson regression model. The key step is separating points in the parameter space by constructing hypothesis tests with suitably small error rates; we do this for individual pairs of points using our truncation approach, and then exploit the monotone likelihood-ratio property of the Poisson family to show that the tests have exponentially decaying errors of types I and II.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Posterior Consistency of Bayesian Nonparametric Models Using Lévy Random Field Priors

Department of Statistical Science, Duke University March 24, 2008 We show the posterior consistency of certain nonparametric regression models using Lévy Random field priors. An easily verifiable sufficient condition is derived for the posterior consistency to hold in popular models which use Lévy random fields for regression and function estimation. We apply our results to a Poisson regression...

متن کامل

A Note on Bootstrap Moment Consistency for Semiparametric M-Estimation

The bootstrap variance estimate is widely used in semiparametric inferences. However, its theoretical validity is a well known open problem. In this note, we provide a first theoretical study on the bootstrap moment estimates in semiparametric models. Specifically, we establish the bootstrap moment consistency of the Euclidean parameter which immediately implies the consistency of t-type bootst...

متن کامل

Posterior Consistency in Nonparametric Regression Problems under Gaussian Process Priors

Posterior consistency can be thought of as a theoretical justification of the Bayesian method. One of the most popular approaches to nonparametric Bayesian regression is to put a nonparametric prior distribution on the unknown regression function using Gaussian processes. In this paper, we study posterior consistency in nonparametric regression problems using Gaussian process priors. We use an ...

متن کامل

Convergence Rates of Posterior Distributions for Noniid Observations By

We consider the asymptotic behavior of posterior distributions and Bayes estimators based on observations which are required to be neither independent nor identically distributed. We give general results on the rate of convergence of the posterior measure relative to distances derived from a testing criterion. We then specialize our results to independent, nonidentically distributed observation...

متن کامل

Convergence Rates of Posterior Distributions for Noniid Observations

We consider the asymptotic behavior of posterior distributions and Bayes estimators based on observations which are required to be neither independent nor identically distributed. We give general results on the rate of convergence of the posterior measure relative to distances derived from a testing criterion. We then specialize our results to independent, nonidentically distributed observation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007